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ABSTRACT
This article theorizes three major cognitive constructs that are operationally defined 
by shared similarities of processing information in reading and mathematics. Spe-
cifically, the paper (1) proposes and details the refinement and evaluation of com-
ponents of a conceptual model for reading to solve mathematical word problems 
for elementary students, and (2) develops and refines the theoretical constructs of 
the model. Our assumptions lay out the interrelationships of reading and mathemat-
ics word problems by focusing on the cognitive components of Recognizing Higher 
Level Patterns of Text Organization (R), Generating Patterns (G), and Attaining a Goal 
(A). These assumptions are to refine and construct the RGA cognitive components 
that could theoretically enhance elementary students’ reading and solution of math-
ematical word problem-solving abilities. 

WASHINGTON (Oct. 14, 2009) — There has been no significant change in the 
performance of the nation’s 4th-graders in mathematics from 2007 to 2009, a 
contrast to the progress seen from 1990 to 2007 at that grade level and subject, 
according to the 2009 National Assessment Governing Board (2009) in math-
ematics.

H istorically, several educational interventions have been suggested to 
improve mathematics achievement in the United States without a sig-
nificant degree of robust success. Among the first that received broad 
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attention, was the move to conceptual development using manipulatives in the New 
Math era (Driscoll, 1983; Fennema, 1972; Sowell, 1989; Suydam, 1986; Suydam & Hig-
gins, 1976). However, this innovation was questioned when in international student 
comparisons the U.S. performance did not improve (Baroody, 1989; cf. Clements & 
McMillen, 1996). A gradual movement emerged in the field that resulted in a greater 
emphasis being placed on testing mathematics through contextualized problems re-
ferred to as word problems. The shift in emphases to word problems resulted in key 
word strategies gaining favor (Fuson, Carroll, & Landis, 1996; Harris & Pressley, 1991; 
Pressley, Levin, & Delaney 1982); however the efficacy of this strategy failed to provide 
any dramatic change in student performance or improvement in the United States’ 
international mathematics ranking (Mullis, Martin, & Foy, 2008; Organisation for Eco-
nomic Co-operation and Development [OECD], 2006).  

 Recently, Slavin and Lake (2008) comprehensively examined various types 
of current mathematics programs available by placing them on a common scale us-
ing best-evidence synthesis. They computed effect sizes and also provided a descrip-
tion of the context, design, and findings of each experimental study. The evidence 
from their review of 86 studies supported several conclusions: (1) there were few high 
quality studies, (2) more randomized program evaluations used over longer time pe-
riods were needed, (3) textbooks and mathematics curricula used for instruction did 
not matter much and little evidence of strong effects were found, and (4) studies of 
Computer Assisted Instruction contained modest effect sizes and some showed posi-
tive effects for computation. The most promising conclusion to assist with theoretical 
reformation from Slavin and Lake was the effect for programs that targeted teachers’ 
instructional behaviors (ES = + 0.33) rather than the content of the programs. They 
noted, “Supplementing classroom instruction with well-targeted supplementary in-
struction is another strategy with strong evidence of effectiveness” (p. 481). 

 The use of computer software programs in increasing students’ proficiency 
in reading and mathematics skills has been growing.  However, the results have not 
been promising. Campuzano, Dynarski, Agodini, and Rall (2009) examined the effects 
of 10 reading and mathematics software products on student achievement. Their 
study tested the effectiveness of each software product by comparing the standard-
ized test scores of students in classrooms using the products to those of students in 
similar classrooms not using the products. They reported one statistically significant 
effect for the six reading programs examined (LeapTrack®, 4th grade). The estimated 
effect size was 0.09, which they noted as the equivalent of moving a student from the 
50th to the 54th percentile in reading achievement. None of the four math programs 
in the study demonstrated significant effects on students’ achievement. These results, 
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coupled with those presented above, give rise to the need to explore alternative 
structures and constructs for helping students to develop mathematics proficiency 
with word problems. In conjunction with the results emanating from Slavin and Lake 
(2008), researchers need to strive to change how teachers teach in order to produce 
the most promising outcomes for students’ increased achievement. Thus we theorize 
a potential set of cognitive components in mathematics that focus on the reading 
demands of word-problem solutions—contextualized reading, vocabulary develop-
ment, problem-solving structure comprehension, and concept development (Capraro 
& Jofrion, 2006; Capraro & Capraro, 2006; Rupley, 2006). Cognitive growth can be de-
veloped in and through both reading and mathematics. Mathematics educators have 
begun to recognize the importance and contribution of reading comprehension skills 
to students’ mathematical success (Adams, 2003; Barton, Heidema, & Jordan 2002).

Perspectives on Previous Theories
 Several models have been suggested that account for the nexus of reading 
and mathematics. The National Council of Teachers of Mathematics (NCTM) proposed 
that students read to learn mathematics (NCTM, 2000). However, this proposal lacked 
the details to disaggregate the reading factors that specifically contribute to math-
ematical learning. In general, some factors have been identified from mathematics 
and reading research. There remains a need for research on the development of fully 
articulated mathematical instruction programs that (a) use what research has shown 
to be effective and (b) improve our future knowledge base—research that enables 
investigators to explore intervention efficacy in natural school settings (Cheung & 
Slavin, 2005; Slavin & Lake, 2008).  The most promising models for using reading to 
improve mathematics strategies were expressed as including: a) application of read-
ing for meaning, (b) vocabulary development, (c) chunking, (d) language usage, (e) 
inference, (f ) reflection, (g) didactics in multiple meanings, and (h) using problems 
closely linked to students’ real-world experiences (Powell, Fuchs, Fuchs, Cirino, & 
Fletcher, 2009).

Overview

 Two main objectives are outlined here that identify and assemble the shared 
constructs of reading and mathematics for the conceptual developmental of a theory 
of reading and mathematics for solving word problems. A feature of mathematical 
performance that has not been extensively studied is elementary students’ solution 
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of word problems, which is perhaps due to the fact that, “ . . . to solve a word problem, 
students must use text to identify missing information, construct a number sentence, 
and set up a calculation problem for finding the missing information” (Powell et al., 
2009, p. 2). We offer our assumptions about the shared constructs followed by sec-
tions theorizing the (1) refinement and evaluation components of Recognizing, Gen-
erating, and Attaining (RGA) that would have application to reading and the solution 
of word problems in elementary students; and (2) develop and refine the essential 
applied constructs of the theory. Our assumptions lay out the theoretical and re-
search-based interrelationships of reading mathematics word problems by exploring 
and substantiating the cognitive components presented in Table 1: (1) Recognizing 
Higher Level Patterns of Text Organization, (2) Generating Patterns, and (3) Attaining 
a Goal—RGA Theory. These assumptions are to refine and construct the RGA cogni-
tive components that could lead to an application that would increase elementary 
students’ mathematical word problem-solving abilities.

Table 1
Three Broad Components of Cognition (Adapted from Rose, 2005) Reading Strate-
gies Form the Constructs of Mathematics Strategies

RECOGNIZING HIGHER LEVEL PATTERNS OF TExT ORGANIZATION OF WORD PROBLEMS

GENERATING PATTERNS (ADOPTING SUCCESSFUL STRATEGIES FOR ACTING ON PATTERNS)

Reading Strategies

Semantics/Syntax/Word 
Identification & Vocabulary
Word order

Fluency (Chunking)

Comprehension

Mathematics Strategies

Semantics/Syntax/Vocabulary of mathematical sen-
tences
Order of operations, relational symbols, operators
Fluency in mathematics

Grouping of symbols (relational and operational) 
with numerical symbols for meaningful computation

Predicting the organization of word problems 

Understanding 1) information provided, 2) the ex-
pected or anticipated solution, and 3) sufficiency 
and necessity of the information provided

De-Coding written language to En-Coding into math-
ematics sentences—Building Internal Representation  
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ATTAINING A GOAL (KNOWING WHETHER OR NOT A GOAL IS REACHED)

Metacognition

Regulation of Text  
Comprehension

Metacognition justification and re-solution strategies

Developing a simpler problem, able to characterize 
the problem using mathematical semantics and syn-
tax

Translation of the written text into mathematical 
sentences based on semantics and syntax.

Restate the problem in own words—Able to retell 
the verbal story from the encoded mathematical 
sentences

The Dilemma

 Whether it is in mathematics, science, geography or other content areas, 
learning and applying knowledge requires the coordinated application of multiple 
reading strategies (Francis, Rivera, Lesaux, Kieffer, & Rivera, 2006). Evidence suggests 
that many readers experience difficulty in cognitive processes such as making infer-
ences, drawing conclusions, and predicting outcomes; those same processes that 
lead to successful solutions of word problems. Comprehension levels increase for 
elementary students when they are taught cognitive strategies through explicit in-
struction (Sencibaugh, 2007; Swanson, 1999). 

 Students’ conceptual understandings were inextricably bound to their iden-
tifying words, understanding of vocabulary, and knowing the text structure (seman-
tics and syntax) (Capraro, Capraro, & Rupley, in press). Cognitive confusion results 
when students try to apply their general language meanings, which leads to inhibited 
reasoning. The content is obscured due to multiple meanings of familiar words being 
applied in a different context of understanding scientific usages (Rupley & Slough, 
2010; Slough & Rupley, 2010). It is in the later elementary grades (third through fifth) 
where degrees of meaning begin to transition from literal, to inferential, and ulti-
mately to conceptual learning. For students to become conceptual learners, they must 
move into inferential learning where they infer about mathematical ideas within the  
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context of word problems, examine the cause and effect of events within word prob-
lems, and determine options for submitting possible approaches to obtaining a solu-
tion (Capraro & Capraro, 2006). 

 Numerous studies of mathematical problems addressed the mental repre-
sentation of the meaning of word problems; however, little of this work focused on 
the cognitive strategies students used to distinguish what was relevant from what was 
irrelevant (Kintsch, 1998; Kintsch & Greeno, 1985; Koedinger & Nathan, 2004; Moreau 
& Coquin-Viennot, 2003). Reading in mathematics necessitates that one understands 
the meaning of the words within the context of the word problem. As children learn 
the vocabulary of mathematics, it is essential they either learn the meaning of new 
words that are not part of their oral vocabulary or understand the different meanings 
of words from those that they already know (Rupley, 2006).

 Cognitive growth enables students more control over the complexity of 
word problem solving. Cognitive growth in solving mathematical word problems 
occurs in stages through representational filters (Capraro, Capraro, & Cifarelli, 2007; 
Cifarelli, 1998) similar to the acquisition of language through language registers (Me-
hler et al., 2002). Many students have a tendency to use certain mathematical proce-
dures without considering why the rules and procedures work. These students focus 
on the computational procedure rather than the conceptual understanding (Thomp-
son, Phillip, Thompson, & Boyd, 1994).

 Cognitive strategies appear to mediate learning; therefore, changes that 
improve the individual cognitive strategy posed promise to influence the sophistica-
tion with which students solve complex word problems (Capraro et al., 2007). It is 
these cognitive strategies that are suspect when students demonstrate mathematical 
misconceptions (Capraro, Kulm, & Capraro, 2005; Capraro, Kulm, Hammer, & Capraro, 
2002). One example would be when students are taught a reading strategy (Mehler 
et al., 2002) to literally translate word problems. For instance, in a typical problem like: 
“Ashley is three years older than Kenisha. Write an equation to show how old Ashley is 
relative to Kenisha’s age,” students are taught to literally translate the problem. Thus, 
Ashley is translated into A=3. Students are also taught that “than” sets up a compari-
son so students continue on the same side of the equal sign completing the sentence 
resulting in A=3+K, which is a correct representation of the solution. However, when 
the problem changes to, “Ashley is three years older than Kenisha. Write the equation 
to show Kenisha’s age relative to Ashley’s age” with the syntactic properties similar 
to the previous problem, but a semantic variation, students end up with the same  
equation (A= 3+K), but in this case, the representation is incorrect. However, students  
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used the literal translation and were unaware of the syntactic difference, which should 
have resulted in the equation (K=A-3).

 In the three examples below we see the same problem, with each support-
ing the interrelationship of cognitive strategies founded upon reading comprehen-
sion and the solution of mathematical word problems (Capraro et al., 2007). In ex-
ample 1, students using a literal translation scheme may arrive at one of these two 
possible incorrect solution representations.

Ex. 1 Quentin has some trading cards. Mohen has 3 times as many trading cards as 
Quentin. They have 36 trading cards in all. How many trading cards does Quentin 
have?

 A) 3X+36=X  B) X+3=36

In example 2, the problem is changed to provide syntactic clues without the neces-
sary semantic clues. So again students operating at a literal level find an inadmissible 
representation for the problem. 

Ex. 2 Mohen and Quentin have a total of 36 trading cards. Mohen has 3 times more trad-
ing cards than Quentin. How many trading cards does Quentin have? 

 A) 36 =M3

However, in example three, the syntactic and semantic clues have been aligned to 
provide the necessary clues that help students’ reason beyond the literal translation 
of word problems. The possible translation is still literal; however, the semantic and 
syntactic clues are aligned to allow discussion of these and for the teacher to model 
the solution process that can be used in the previous examples to move toward an 
implicit decoding scheme.

Ex. 3 Quentin has some trading cards but Mohen has 3 times more trading cards than 
Quentin. When you add their cards together they have 36 cards. How many trading 
cards does Quentin have? 

 A) 3x +x =36

 As we have found in our own research (Rupley, 2006; Capraro & Capraro, 
2006), that as students transition from reading mathematical word problems for  
literal information, they begin to develop a mathematics language register. It is 
through this register that they begin to learn a cognitive process for decoding complex  
problems and understanding the inter-relationships of words to mathematical  
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symbols (Rupley & Nichols, in press). They begin to form the representational correla-
tions between the word problem and mathematical constructs so they could express 
them in mathematical symbols (Capraro & Joffrion, 2006; Capraro et al., 2007). 

 Children may translate English sentences into mathematical expressions, 
simply moving from left to right without awareness of syntactic and semantic re-
lationships (Powell et al., 2009). For example, “three less than a number” was inter-
preted by many students as “3 – X”, which was really X – 3 since the words “less than” 
meant to subtract followed the 3. Teachers must be aware of these literal translation 
schemes and address them through instruction (Lodholz, 1990). Evidence has sug-
gested deeper cognitive reasons for students reversing variables or putting terms in 
the wrong order. The students in a particular study made an attempt to understand 
the problem, but were unable to represent their cognitive model symbolically (Cap-
raro & Yetkiner, 2008; MacGregor & Stacey, 1993). 

Theory Constructs

 An essential feature of the theory we propose is the recognition of the in-
extricable relationship of the cognitive outcomes for both reading and mathemat-
ics. The constructs for each cognitive component of RGA are supported by research 
demonstrating benefits in reading and mathematics achievement and work together 
to help students analyze word problems conceptually. This theory, in application, we 
believe would better enable elementary students to begin to establish a learning 
foundation that enables them to think about problems less in terms of deriving an 
answer and more in terms of reasoning about underlying concepts, which is accessed 
through the reading and understanding of the text mathematically. This intent is 
pervasive throughout mathematics (Lave & Wenger, 1991; Schoenfeld, 2006; Van Der 
Henst, Sperber, & Politzer, 2002) and reading education (Fordham, 2006; Pressley, 
2002a). The use of principles from cognitive science melds the shared components, 
skills, and understandings of these two into a theory of great potential for classroom 
application.   
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Recognizing Higher Level Patterns of Text Organization Cognitive 
Components (R) (Syntax/Semantics/Vocabulary & Word Identification/
Fluency)
 The recognizing higher levels of text organization cognitive components we 
theorize will positively affect elementary students’ achievement on word problems. 
In particular, we predict that Syntax, Semantics, and Word Identification/Fluency 
have individual and combined positive effects on the grades four and five students’ 
achievement on word problems.

 Research has shown us that syntax (e.g., verb, sentence structure, subject/
noun agreement), semantics (e.g., morphemes), and word identification and vocabu-
lary (e.g., repeated readings, rhymes), as shown in Figure 1, are essential cognitive 
features in word problem solutions (Capraro et al., 2007) just as they are in reading 
comprehension and understanding (Pressley, 2002a; Smagorinsky, Cook, & Reed, 
2005). Reasoning capabilities for these reading skills support and reinforce concep-
tualization of mathematical word problems. Littlefield and Rieser’s (1993) semantic 
features model of discriminating information advanced the credibility of the para-
mount importance of these features, and presented evidence that this model fits the 
discrimination performance of students who are successful at mathematics as well 
as those who are less successful. Their model demonstrated how successful students 
analyze the problem text and questions into semantic units, including the actions, 
agents (persons/things carrying out the action), objects acted upon (these typically 
correspond to the units of measure), as well as the time and place of actions. Success-
ful students identify relevant information by searching the problem text for informa-
tion, trying to match the values of semantic features requested in the question with 
those in the problem text. In contrast, less successful mathematics students were sig-
nificantly more likely to base their discriminations on surface level aspects of the text 
such as the position of information within the problem statement (e.g., consistently 
selecting as relevant the first and last numbers). This strategy is almost identical to 
those employed by readers who have good word recognition skills but lack a cogni-
tive understanding that the purpose of reading is comprehension. They are dealing 
with the surface or text level features and failing to connect with their prior knowl-
edge to get meaning (Afflerbach, Pearson, & Paris, 2008; Jetton, Rupley, & Willson, 
1995).
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Fig. 1: Recognizing patterns

Example of Pedagogical Features of the Recognizing Patterns Cogni-
tive Component Are Listed Below:
 Modified cloze procedures: where students write the correct word in each 
blank space, solve the word problem and discuss among themselves how the con-
ceptualization was determined by the words/numbers used in the blanks. Such a 
feature focuses on both the syntax and the semantics of the text and the meaning 
features and graphic features of their word/number choices. The word choices must 
not only be correct syntactically, but must also make sense (semantics) in the concep-
tualization of the mathematical problem. For example: The ______boys went to the 
store to buy candy. Each boy wanted to buy some large candy bars. They had $10.00 
to buy their candy. The candy bars were two for ________ or _______for one candy 
bar. The most candy bars they can buy is ________. The fewest number of candy bars 
they can buy is _______.

 Classification: is associated with all three language features (syntax, seman-
tics, word identification/vocabulary) and can be used to introduce and practice new 
mathematical conceptual words and to reinforce successful comprehension. A highly 
successful technique for increasing word-identification abilities that we know should 
generalize to mathematics is to encourage students individually and in small groups 
to learn words by arranging them in a word sort. A word sort is a method of sorting 
word cards into various mathematical categories (such as sum, how many, total, all 
together). 
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 Semantic Clues Categories: enable readers to better understand and com-
prehend what they are reading in mathematics. These clue categories are essential 
for conceptualization in mathematics (Mayer, & Hegarty,1996). Johnson and Pearson 
(1984) classified the major kinds of semantic clues available to readers. A modified 
listing applicable to mathematics follows:

• Signal words in mathemathics texts are words such as is, are, and combined. 
Words such as these are often used to alert the reader about equivalencies 
or operations.

• Synonyms and antonyms. When students encounter unknown mathemati-
cal words they can use either synonyms or antonmyns (e.g., subtraction is an 
antonmyn of addition) with their zone of proximal development to support 
their problem-solving development.

• Summary statements. Based on connected mathematical story information, 
there may be multiple solutions, which are defensibile based upon cognitive 
reasoning. 

 Morphemes: are essential to understanding text and enabling the concep-
tualization of mathematical word problems. The Recognizing Patterns cognitive com-
ponent focuses on teaching students to learn and understand the functions of both 
bound and free morphemes. Affixes (prefixes, suffixes, and inflectional endings) are 
bound morphemes that must be attached to a free morpheme or base word. Some 
common prefixes and suffixes (affixes), base words, and root words can help students 
learn the meanings of many words encountered in mathematics, (Goldfield & Snow, 
1999). For example, if students learn just the four most common prefixes in English 
(un-, re-, in-, dis-), they will have important clues about the meaning of about two 
thirds of all English words that have prefixes (Armbruster & Osborn, 2001). 

 Word Identification & Fluency: Researchers (Rasinski, Rupley, & Nichols, in 
press; Samuels & Flor, 1997) have identified effective techniques related to repeated 
oral reading that will be integrated into the development of the Recognizing Patterns 
cognitive component: (1) students read and reread a text a certain number of times 
or until a certain level of fluency is reached (generally 80 to 100 words per minute are 
required to chunk text into comprehensible units for processing); (2) four re-read-
ings are generally sufficient for most students; and (3) oral reading practice can be 
increased through the use of audiotapes, tutors, and peer guidance. Poetry, rhymes, 
and songs are especially well suited to fluency practice because they are often short, 
repetitive, and they contain rhythm, rhyme, and meaning, and can incorporate the 
use of multiple input channels for processing of text. Two examples showing slightly 
different levels of mathematics:
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Rain, rain go away. Rain, rain go away.
It rained 5 inches yesterday. It rained 5 ¼ inches yesterday
Rain, rain go away. Rain, rain go away.
It rained 6 more inches again today. It rained 3.5 more inches today.
Rain, rain go away. Rain, rain go way.
It will rain again tomorrow,  It will rain again tomorrow,
 4 more inches is what they say.  3 3/8 more inches they say.
Rain, rain go away. Rain, rain go away.
If this is so it will have rained  If this is so it will have rained
 ____inches in just three days.  ____inches in just three days.
I will never get to play.  I will never get to play. 
It will be averaging  It will be averaging
 ______inches of rain a day.  ______inches of rain a day.

Generating Patterns Cognitive Components (G)
 The Generating Patterns Cognitive Components we theorize will positively 
affect elementary grade students’ achievement on word problems. In particular, we 
predict that Story Schema, Comprehension, and Summarization will have individual 
and combined positive effects on the students’ achievement on word problems.

 A story schema is a set of expectations about how stories are usually orga-
nized (Gordon & Braun, 1983). An internal organization of story knowledge enables 
readers to process print by retaining story information in memory (see Figure 2) until 
it makes sense and adding more information as they read. A reader’s story schema 
also is important in that it forms a template for recalling what was read. While nar-
rative materials follow a traditional story structure, expository writing is organized 
differently. Most content texts are written in an expository/informational style, which 
results in text that is subject structured, compact, detailed, and explanatory in nature. 
Mathematical word problem schema is characterized by three basic mathematical 
components embedded within them (Teubal, 1975): the verbal formulation; underly-
ing mathematical relations; and the symbolic mathematical expression. Word prob-
lems can be further analyzed by examining their linguistic properties, their logico-
mathematical properties, or their symbolic representations. Linguistic properties 
included such variables as the number of words in the problem or the mean sentence 
length (Lepik, 1990). The logico-mathematical properties can be classified in numer-
ous ways, but one scheme is to classify the quantities in the problem into known 
quantities, the values that needed to be found, and values that may need to be found 
as intermediate stages of the problem (Verschaffel, Greer, & De Corte, 2000). 
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 Background knowledge, including purposes, has an overriding influence 
upon the reader’s development of meaning (Gersten, Fuchs, Williams, & Baker, 2001). 
Reading comprehension involves activating, focusing, maintaining, and refining of 
ideas toward developing interpretations that are plausible (Okolo, Englert, Bouck, & 
Heutsche, 2007). Thus successful comprehension is an interrelated activation of mul-
tiple mental processes (Pressley, 2002b) that originate with the connection of prior 
knowledge with the purpose of the reading act, which are then interconnected and 
result in comprehension.

Fig. 2: Generating patterns

 In addition, there is a sense in which the reader’s comprehension involves 
two other facets: the reader knowing (either tacitly or consciously) that his or her 
interpretations for a text were plausible, interconnected, and completely made sense, 
and, ideally, the reader’s evaluation of the transfer value of any acquired understand-
ing. We can view background knowledge as an individual’s experiential and cognitive 
capabilities for (1) written text (word recognition, concept of print, understanding of 
word order, and understanding of word meanings), as well as (2) the content of what 
is being read, and (3) how text is organized (Alexander & Jetton, 2000). Activating 
prior knowledge is especially important in mathematics word problems: “. . . , an ef-
fective reader has a clear understanding of mathematical concepts, how they build 
on one another, and how they are related” (Barton & Heidema, 2002, p. 11).
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Examples of Pedagogical Features of the Generating Patterns 
Cognitive Component Are Listed Below:

Story Schema: (Representation of Reading Plot and Mathematics Plot Relation-
ships) Starter Event, Inner Response, and Action (Reading) Initial State (Mathematics): 
Billy hoped to get a bike for his birthday. But he didn’t so he decided to make a plan 
to buy one for himself. He decided to work odd jobs around the neighborhood for 7 
days to save enough money to buy his bike. Outcome (Reading) Goal State (Math-
ematics). On Monday he earned $2.00, on Tuesday he earned $4.00, on Wednesday he 
earned $8.00, and Thursday he earned $16.00, and on Friday he earned $32.00. Reac-
tion (Reading), Legal Problem-Solving Operators (Mathematics). Did he have enough 
money to buy a bike for $250.00? Did he have any money left over? 

Comprehension: in our theory, comprehension is connected to the two critical com-
ponents for understanding mathematical word problems (Neufeld, 2005)—prior 
knowledge and purpose(s) for reading. Questions that have answers within the text 
information are explicit and referred to as the in-the-book category. This type of ques-
tion can be used to guide students to realize when the answer is either (1) explicitly 
stated in the text in one or two sentences (There were 31 ducks on the lake. When 
the dog barked 10 flew off, how many are left?) or (2) explicitly stated in the text but 
requires putting together information from several parts. (There were 31 ducks on the 
lake. Because if was getting colder more ducks were flying south for the winter and 
flew over the lake. The lake was large and 10 more ducks landed on it. The ducks that 
landed scared off 3 ducks that were already there. Another flock of ducks flew over 
and 29 landed on the lake. The farmer who lived close to the lake had a tractor that 
made a loud noise when he drove it. When he went close to the lake 8 ducks flew off. 
How many ducks are still on the lake?). Readers must think and search for the con-
ceptual information necessary to understand the word problem when working with 
upper-elementary and middle-school students by including strategies for identifying 
information in terms of their prior knowledge of text structure (Raphael, 1988; Ra-
phael & Au, 2005). Knowledge of text structure will help students understand how in-
formation is organized and how this knowledge helps to conceptualize mathematics. 

Summarizing: Readers who can effectively summarize information can also sort 
through large pieces of text, distinguish important from unimportant ideas, and 
bring the ideas together so that the new text represents the original (Capraro & Yet-
kiner, 2008). The ability to summarize appears to be developmental (Rupley & Will-
son, 1997). A summary, such as a paraphrase, is a variation of an original passage in 
one’s own words.  Summary strategies for reading and mathematics are of paramount 
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importance  in reading and conceptualizing mathematical word problems. In reading, 
the summary demands that readers (1) determine what is important, (2) condense 
the information, and (3) then put it in their own words. The summary process in con-
ceptual mathematics is identical; however, “putting it in their own words” is deriving 
from the story the information for solution of the problem.  Salient features of sum-
marization include: (1) Identifying the problem in their own words and representing it 
through writing, drawing, or making a table. (2) Determining the main ideas and con-
necting them together in a webbing activity, semantic features analysis, or writing 
activity. (3) Reading and eliminating from the mathematical word problem redundant 
and unnecessary information. And (4) Remembering what they read by answering 
summary questions.

Attaining a Goal Cognitive Components (A) 
 The Attaining a Goal Cognitive Components will positively influence el-
ementary students’ achievement on solving word problems. In particular, we predict 
that Text Organization and Regulated Comprehension of Text have individual and 
combined positive effects on the students’ achievement in solving word problems.

 Competent readers monitor their comprehension and know when the pro-
cess is breaking down (Cross & Paris, 1988). This monitoring of comprehension has 
been deemed metacognition (See Figure 3). We have learned over the past few de-
cades that good readers are aware of how they construct meaning and apply correc-
tive strategies when they are not constructing meaning (Zimmerman, 1989). Meta-
cognition requires knowing how to achieve the goal that has not been accomplished, 
as well as knowing when a goal has been reached. The other component of goal at-
tainment is regulation of text comprehension. Regulation of text comprehension is 
the incorporation or translation of multiple sentences into knowledge units on which 
they can take some action.  In brief, the issue is one of resource allocation during cog-
nitive activity and problem solving.

Fig. 3: Attaining goals
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Metacognition 
 Metacognition in the reading domain is a support for working memory in 
the conceptualization and solution of mathematical word problems. Working mem-
ory (where thinking “gets done”) receives its contents from two sources, the sensory 
buffer and long-term memory. The most important aspect of working or short-term 
memory (STM) is its limited capacity. In general humans can only keep about seven 
“chunks” of information in STM, and operate on them (Miller, 1950 as cited in Schoen-
feld, 2006). Metacognitive strategies provide a buttress for the memory process by 
feeding back into working memory of mathematical conceptual knowledge that sus-
tains continued progress toward obtaining a solution. 

 In a comprehensive synthesis of metacognitive research in reading, Pressley 
(2002b) noted the following: (1) minimal effort is needed to decode words, which 
frees up a great deal of cognitive capacity for comprehension, for both words and 
ideas that are represented by phrases, sentences, and paragraphs; (2) cognitive ca-
pacity is put to effective use to metacognitively focus on knowing that comprehen-
sion is built by relating what is read to prior knowledge; (3) metacognition thus fa-
cilitates prediction by the reader about what might be coming up in the text and 
summarize what is being read; and (4) metacognition used by readers alerts them to 
when ideas are confusing and how to respond to fix-up strategies, such as rereading, 
diagramming, searching for patterns, and identifying key concepts carrying words.

 Organization of Contents of Memory (Schoenfeld, 1992), taken from Sil-
ver (2000), represents the metacognitive, reciprocal relationship of mathematical 
problem solutions and reading components, which are the stimuli represented by 
the visual sensory buffer. Reading the word problem activates meta-level processes 
and mental representations leading to mathematics knowledge and metacognitive 
knowledge to monitor conceptualization of word problems that lead toward continu-
ous progress to solution of the word problem.  

 Readers, therefore, must have the ability to monitor their comprehension 
and know when they have achieved their purposes for reading, when they under-
stand and do not understand what they are reading, and how to correct and regulate 
their comprehension of text (Sencibaugh, 2007).  The same attributes are necessary 
for conceptualization and solution of mathematical word problems. The instructional 
components emanating from our theory could be applied to guide elementary stu-
dents to become aware of what they are doing and why they are doing it. In addition, 
it supports the development of strategies that model how to check, monitor, and test 
hypotheses. It provides for them cognitive strategies to monitor their understanding 
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of mathematical word problems and employ and activate fix-up strategies when un-
derstanding breaks down.  

Example of Pedagogical Features of the Attain a Goal Cognitive 
Component Are Listed Below:

Text Organizations: analysis of the structure of the text is a means for monitoring 
comprehension efficacy. Strategies for analysis of text organizations include the fol-
lowing: (1) Draw a diagram or a map of the word problem if it involves distance and/
or places. (2) Find a pattern or make a model by skipping around in the text to create 
a model of the main idea: this may require going back to some information or to read 
the text quickly the first time and skip ahead to add to the model. (3) Work backwards 
if the word problem is asking about what happened first or at the beginning of the 
word problem.

Regulation of Text Comprehension: Those students who have good comprehen-
sion are also active and engaged readers (Connor, Morrison, & Petrella, 2004). These 
readers relate ideas in text to their prior knowledge, construct images, and generate 
summaries. They do a lot of monitoring with discernment of understanding during 
reading, enabling them to establish effective recognition of how they process the 
text. Such here-and-now cognition in the form of active discernment of meaning is 
always being generated as the competent reader reads with such awareness. Strate-
gies that serve these purposes are: (1) Solve a simpler problem by transforming a 
difficult or complicated word problem into a simpler problem with similar steps and 
operations; then, this is transferred to conceptualizing the complicated word prob-
lem. (2) “Guess and check” enables the approximation of a solution for a word prob-
lem and activates prior knowledge for the elaboration of the process to be applied to 
the original problem and construct a model for solution. (3) Logical reasoning is used 
to determine the key concept intended to be conveyed through the “word” in the 
mathematical word problem.

Discussion

 The theory of integrating reading and mathematical constructs represents 
a unique and logical synthesis across extant reading and mathematics literature. The 
nexus of reading to learn and the acquisition of mathematics knowledge is a rela tively 
unexplored construct in the elementary grades where reading and mathematical  



LEARNing Landscapes  |  Vol. 5, No. 1, Autumn 2011244

William H. Rupley, Robert M. Capraro, & Mary Margaret Capraro

skills lead to either the success or failure of each in later grades. While there may be 
many other possible constructs on which to build mathematical learning, none seem 
so plausible as one that combines the literature across reading and mathematics. 
This construct makes use of ideas originally suggested in the cognitive sciences that 
propose learning that scaffolds across subject areas increases the rigor and provides 
richer contexts from which deeper understandings can be fostered.

 The integration theory assembles a set of constructs in reading and math-
ematics that focus on the nexus of reading and mathematics as complementary, in-
terconnected, and interdependent. Mathematics content devoid of context is use-
less (Adams, 2003). The real-world context for solving mathematical word problems 
is conveyed in writing, spoken language, and through stories told from one person 
to another (Boaler, 1999).  Mathematical language follows a structure parallel to that 
learned for reading. Context gives meaning to written words and mathematical sen-
tences. Children must be taught to intertwine reading and mathematical cognitive 
strategies to make meaning of word problem-solving events. The real-world context 
for mathematics is conveyed in writing, speaking, and through stories. These basic 
communication conditions are the link for understanding mathematical language. 

 It is critical for elementary students to know and understand mathemati-
cal language and to develop facility with recognizing patterns within this language. 
Mathematics is often taught and uniformly assessed, embedded within dense textual 
presentations requiring facility with language structure, fluency, and vocabulary. This 
overarching strategy is important for translating word problems into mathematical 
symbols for selecting a suitable algorithm. How do children make sense of contextu-
alized mathematical word problems? Some have hypothesized a key word strategy 
similar to sight vocabulary lists in reading, while others support a decoding strategy,  
yet others support a broad contextualized reading vocabulary accompanied by 
strong mathematical conceptualizations and accurate procedural knowledge. One 
strategy incorporates mathematics literature books to create dynamic and interactive 
learning environments (Bintz & Moore, 2002; Capraro & Capraro, 2006). While some 
argue that teacher and instructional characteristics yield promising factors for im-
proving mathematics achievement (Meijnen, Lagerweij, & de Jong, 2003), we suggest 
an amalgam of strategies synthesized into the cognitive strategy referred to as gener-
ating patterns. The use of this cognitive strategy that builds on recognizing patterns 
while adding well-known components of predicting, decoding and encoding, build-
ing internal representations, and restating serve to create the intellectual structures 
to bridge into the final hypothesized cognitive strategy. 
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 The capstone of our theoretical model is the cognitive strategy of Goal At-
tainment. Goal attainment reflects the ability of students to know what to do and 
how to do it. In today’s society many students have reading and mathematical dif-
ficulties. Often arithmetic computation is used as a proxy measure of mathematics 
learning when in fact naked computation is a poor proxy for mathematical ability and 
poorly correlated to current trends in high stakes assessment. Comorbidity (math-
ematics and reading difficulties) compounds issues related to mathematics learning 
when students are expected to comprehend nuances in either spoken or written 
communication (Bos et al., 2003). Therefore, students encounter learning conditions 
that are not aligned with developing and applying metacognitive strategies. The lack 
of development of the ability to introspectively exam one’s own thinking becomes a 
barrier to being able to make meaningful connections between and among the cog-
nitive strategies.

 We believe our synthesis of the existing literature and the resulting ana-
lytical and theoretical framework can serve to stimulate introspective and reflective 
thinking regarding the inter-relationships of reading and mathematical word prob-
lem solutions in the elementary grades. In addition, components of the theory can 
provide researchers with a starting point to pursue more in-depth aspects of the 
shared features of the cognitive components between reading and mathematics.
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